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The theory of stress-induced cavitation is applied here to the problem of cavitation
of a viscous liquid in the streaming flow past a stationary sphere. This theory is a
revision of the pressure theory which states that a flowing liquid will cavitate when
and where the pressure drops below a cavitation threshold, or breaking strength, of
the liquid. In the theory of stress-induced cavitation the liquid will cavitate when and
where the maximum tensile stress exceeds the breaking strength of the liquid. For
example, liquids at atmospheric pressure which cannot withstand tension will cavitate
when and where additive tensile stresses due to motion exceed one atmosphere. A
cavity will open in the direction of the maximum tensile stress, which is 45◦ from the
plane of shearing in pure shear of a Newtonian fluid. This maximum tension criterion
is applied here to analyse the onset of cavitation for the irrotational motion of a
viscous fluid, the special case imposed by the limit of very low Reynolds numbers and
the fluid flow obtained from the numerical solution of the Navier–Stokes equations.
The analysis leads to a dimensionless expression for the maximum tensile stress as
a function of position which depends on the cavitation and Reynolds numbers. The
main conclusion is that at a fixed cavitation number the extent of the region of flow
at risk to cavitation increases as the Reynolds number decreases. This prediction that
more viscous liquids at a fixed cavitation number are at greater risk of cavitation
seems not to be addressed, affirmed nor denied, in the cavitation literature known to
us.

1. Introduction
Winer & Bair (1987) and, independently, Joseph (1995, 1998) proposed the

maximum tension criterion for cavitation which states that the flowing liquid will
cavitate if the maximum tensile stress exceeds a critical value. Since this maximum
stress is associated with a principal direction, this criterion is not isotropic. Winer &
Bair (1987) introduced the idea that stress-induced cavitation may enter into the
apparent shear thinning of liquid lubricants. They remarked that shear thinning may
be the result of a yielding or cavitation event that takes place at a critical value of the
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liquid’s tensile stress. They further note that: ‘for some high shear rate viscosity data
at atmospheric pressure the principal normal stress may approach quite low values
relative to one atmosphere suggesting the possibility of cavitation or fracture of the
material resulting in a reduced shear stress.’ In a private communication, Professor
Bair noted that ‘. . . There was little interest from tribologists, so we dropped it until
recently. In the original work we were able to see to the voids by eye using a clear
plastic outer cylinder . . . ’.

The maximum tension criterion is embedded as one possibility for liquid failure
presented by analysis of the state of stress in Joseph’s theory. A comparison of
these theories can be found in the study of cavitation in creeping shear flows by
Kottke, Bair & Winer (2005). Numerous examples of cavitation in shear flow by
other researchers are discussed by Kottke et al. (2005). Examples of stress-induced
cavitation in extensional flow and shear flow were discussed by Joseph (1998). Pereira,
McGrath & Joseph (2001) did a theoretical study of cavitation in a journal bearing
with axial throughput. They found that the inception of cavitation in a moving fluid
is always stress-induced. Funada, Wang & Joseph (2006) carried out an analysis
of stress-induced cavitation in a two-dimensional aperture flow modelling atomizers
in which cavitation is well documented. The aperture flow was expressed using a
complex potential and the stress calculated using viscous potential flow. They found
that the viscous stress was huge near the tips of the aperture; thus cavitation could
be induced. The region at risk to cavitation is larger, for a fixed cavitation number,
when the Reynolds number is smaller.

In this paper, we study stress-induced cavitation in the streaming motion past a
sphere. This kind of study differs from the typical one based solely upon the local
pressure; it is necessary to compute the field of principal stresses as well as the
pressure. This program is carried, without approximation, by numerical simulation
of the Navier–Stokes equations. We also analyse the same problem for two cases in
which simple explicit formulas for cavitation inception may be derived. The first case,
Stokes flow, is an asymptotic limit in which inertia – the Reynolds number– is not
in play. In the general case, in which inertia is important, the criterion for cavitation
inception is a relation between the cavitation number and the Reynolds number;
the region at risk to cavitation increases when both the cavitation number and the
Reynolds number decrease. This dependence is shown explicitly by the analysis based
on potential flow of a viscous fluid (VPF) presented in § 5 and by the numerical
simulation of the Navier–Stokes equation presented in § 6.

2. Theory of stress-induced cavitation
The stress in an incompressible Newtonian fluid is given by

T = −p1 + 2µD[u], (2.1)

where D [u] is the symmetric part of the velocity gradient, u is the velocity field and
trD [u] = 0, such that

trT = T11 + T22 + T33 = −3p. (2.2)

We define the stress at the cavitation threshold as pc. It is positive when compressive
and negative when tensile. Classically, the vapour pressure is taken as the threshold
stress; however, in the next section, we discuss examples where different values,
including tensile values, should be used for the cavitation threshold.
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In the pressure criterion, the viscous part of the stress tensor is not considered and
the liquid will cavitate when

−p + pc > 0. (2.3)

The pressure criterion assumes that cavitation inception is determined by the average
stress, called the pressure. The fluid cannot average its stresses; it sees only principal
stresses, and when the actual state of stress is considered there is at least one stress
which is more compressive and another which is more tensile than the average stress.
The most conservative criterion is the one which requires that the most compressive
stress is larger than the cavitation threshold: suppose T22 is the most compressive and
T11 is the most tensile (or least compressive) stress; then, if

T22 + pc > 0 (2.4)

for cavitation, it will surely be true that

−p + pc > 0 and T11 + pc > 0. (2.5)

The maximum tension theory, which perhaps embodies the statement that liquids
which are not specially prepared will cavitate when they are subject to tension, can
be expressed by the condition that, supposing T11 to be the maximum of the three
principal stresses,

T11 + pc > 0. (2.6)

The cavitation number K compares the cavitation threshold pc with a typical
pressure; here in our sphere problem, with the pressure p∞ at infinity. We define

K =
p∞ − pc

NR

, (2.7)

where NR = µU/L for Stokes flow and NR = ρU 2/2 when inertia acts; L is a
characteristic length scale. Later, the analysis will show that the stress difference
between the free-stream pressure and the cavitation threshold p∞ − pc is the critical
value rather than the cavitation threshold by itself.

The maximum tension criterion (2.6) has recently been studied in a numerical
simulation of bubble growth in Newtonian and viscoelastic filaments undergoing
stretching by Foteinopoulou, Mavrantzas & Tsamopoulos (2004). They base their
analysis on the Navier–Stokes equations for Newtonian fluids and the Phan-
Thien/Tanner model for viscoelastic fluids. They compute the principal stresses and
evaluate the cavitation threshold for the maximum tension criterion (2.6), the pressure
theory (2.3) and the minimum principal theory (2.4). They find that the capillary
number at inception is smallest for (2.6). As remarked by Kottke et al. (2005), the
cavitation threshold pc could be negative or positive. In the case of pc < 0, the liquid
shows tensile strength; for pc = 0, a cavity will open if the maximum principal stress
becomes positive (i.e. tensile), and, if pc > 0, the cavitation threshold is given by a
positive pressure (i.e. compressive stress). The latter case is typified by the pressure
theory of cavitation determined by the local pressure dropping below the vapour
pressure.

To each principal stress there corresponds a principal direction, which plays a role
in the physics of cavity inception. Joseph (1998) asserts that: ‘if a cavitation bubble
opens up, it will open in the direction of maximum tension. Since this tension is
found in the particular coordinate system in which the stress is diagonal, the opening
direction is in the direction of maximum extension, even if the motion is a pure shear.
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It may open initially as an ellipsoid before flow vorticity rotates the major axis of
ellipsoid away from the principal tension axis of stress, or it may open abruptly into
a “slit” vacuum cavity perpendicular to the tension axis before vapour fills the cavity
as in the experiments of Kuhl et al. (1994).’ These ideas are illustrated in sketches
showing the orientation of the principal directions on the surface of the sphere for
each approach considered in this study.

Consider the expression for the stress tensor for a Newtonian fluid given in (2.1).
Adding the diagonal tensor pc1 to both sides and decomposing p = p∞ + p∗ yields

T + pc1 = − (p∞ − pc) 1 − p∗1 + 2µD. (2.8)

Dividing through by the normalizing factor NR , (2.8) becomes

T + pc1

NR

= −
(

K +
p∗

NR

)
1 +

2µ

NR

D. (2.9)

The strain-rate tensor can be readily diagonalized. Thus the principal stresses
and directions can be determined. Suppose now that K = Kc at the marginal state
separating cavitation from no cavitation. For short, let us call Kc the incipient
cavitation number. This marginal state is defined by an equality in one of the three
criteria (2.3), (2.4) or (2.6). For the maximum tension theory K =Kc when T11+pc = 0.
In particular, for the maximum principal stress T11, (2.9) yields

(T11 + pc) /NR = −(K + p∗/NR) + 2µD11/NR, (2.10)

where D11 denotes the maximum principal rate of strain. Then, Kc = (−p∗+2µD11)/NR

is, in general, a scalar function of the position in the fluid domain. For a positive
cavitation number, consider K = Kc + K∗ such that (T11 + pc) /NR = − K∗. It is thus
clear from (2.10) that

T11 + pc < 0 when K > Kc, (2.11)

and

T11 + pc > 0 when K < Kc. (2.12)

The latter condition implies that the liquid is at the most risk to cavitation in regions
where K < Kc. For instance, for a fixed cavitation number K , no cavity will open
if K > Kc,max, the maximum value that Kc takes in the entire fluid domain. On the
other hand, the cavitation number K , based on the actual hydrodynamics, may vary
in the fluid domain, since the cavitation threshold pc may also change with position.
For example, Singhal et al. (2002) included in their cavitation model the effect of the
local turbulence pressure fluctuations in the phase-change threshold pressure.

3. Cavitation threshold
Cavitation can be defined as the formation, expansion and collapse of a cavity

in a liquid. In general, the ‘formation’ of a cavity implies both the appearance of a
new void or the growth of a pre-existing nucleus beyond a critical size large enough
to be observed with the unaided eye (Young 1989). The idea of the opening of a
cavity in the liquid continuum brings into consideration the concept of liquid tensile
strength, which is a material property. The pressure criterion for cavitation states that
the liquid cavitates when the local pressure reaches the vapour pressure somewhere
in the domain. Knapp, Daily & Hammit (1970) discuss that, although the inception
of a cavity has been observed in experiments when local pressure is near the vapour
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pressure, deviations of various degrees have been reported for different liquids such
that the results do not agree with the vapour pressure criterion. Knapp et al. (1970)
define the vapour pressure as: ‘the equilibrium pressure, at a specified temperature, of
the liquid’s vapour which is in contact with an existing free surface.’ They argue that
the stress required to rupture the continuum in a homogeneous liquid is determined by
the tensile strength, not by the vapour pressure. The literature on the tensile strength
of liquids is vast, and a good account of experimental results is given in the book by
Knapp et al. (1970) for various liquids. In particular for water, values ranging from
13 to 200 atm are listed. Briggs (1950) reports inception of cavities in water induced
by centrifugal force for pressures between vapour pressure and −300 atm (tension).
Recently, Kottke, Bair & Winer (2003) measured the tensile strength of nine liquids,
including water, lubricant and polymeric liquids. Theoretical estimates of the tensile
strength of water render large negative values in the interval −500 atm to −10 000 atm,
which, however, have never been reported from experiments (Strasberg 1959). Both
observed phenomena, the wide scatter of the experimental results and the inception
of cavitation at pressures much higher than the theoretical tensile strength reported
in the literature, indicate the existence of weak spots in the fluid that allows breaking
of the continuum. Plesset (1969) comments that bubbles can grow to macroscopic
dimensions starting from voids of size already beyond the molecular level, under
tensile stresses much lower than the theoretical values predicted for pure liquids.

Fisher (1948) reasons that, just as very greatly subcooled liquids (such as glass) may
fail by the nucleation and growth of a crack, a fluid may fail under tension by the
growth of a cavity starting from very small holes. By applying methods of nucleation
theory, Fisher predicts fracture tensions for several liquids with values, however,
one order of magnitude higher than the experimental evidence. Some mechanism is
required to stabilize pre-existing nuclei in the liquid. For a very small bubble suspended
in the liquid, the pressure inside the bubble is much higher than the pressure in the
surrounded liquid because of surface tension forces. This pressure difference diffuses
the gas out of the gas void until it vanishes. On the other hand, larger bubbles will
rise and escape through the surface. Harvey et al. (1944a) introduced the idea of
stabilized gas pockets attached to submicroscopic and hydrophobic crevices in the
surface of the liquid container or in solid impurities. The size of these nuclei can be of
the order of microns. Harvey et al. (1944b) supported their theory with results from
a series of experiments in which previously pressurized and unpressurized samples
of water were boiled at atmospheric pressure, such that the saturation pressure
corresponding to the boiling temperature was taken as a rough measure of the
effective tensile strength. Although quite a broad scatter was observed in the results
for the pressurized samples, they all boiled at temperatures much higher than the
saturation temperature for atmospheric pressure, which was the boiling temperature
showed by the unpressurized samples. Tensile strength of 16 atm was reported in
some samples previously pressurized.

Harvey, McElroy & Whiteley (1947) performed a different type of experiment
to investigate tensile strength of water by high-speed removal of a square-ended
glass rod from a narrow glass tube containing the liquid. Meticulous cleaning of
the glass surfaces and pressurization of the sample with the rod in position were
done to remove hydrophobic spots and gas nuclei. In terms of the rod-withdrawal
speed, they found that: ‘if the rod surface contained glass nuclei, or was hydrophobic
and free of gas nuclei, cavitation occurred at the rear end when the velocity was
less than 3 m s−1, but if completely hydrophilic and free of gas nuclei, the velocity
could be 37 m s−1 (. . . ) without cavitation.’ Knapp (1958) confirmed Harvey’s results,
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performing experiments at a rather larger scale. Strasberg (1959) explored the onset
of acoustically induced cavitation in tap water, finding that microscopic undissolved
air cavities, which show a slow motion toward the surface, play an important role as
nuclei. Apfel (1970) extended Harvey’s theory to consider the condition required in a
liquid for the inception of a vapour cavity from a solid impurity in the liquid. Crum
(1982) examined the crevice model of Harvey et al. (1944a), comparing its predictions
with experimental evidence.

From the standpoint of hydrodynamic cavitation, stream nuclei carried by the
moving liquid as particulates or microbubbles have a greater contribution as sites for
onset of cavitation than the surface nuclei originating in crevices or cracks on the
solid boundaries (Billet 1985 and references therein). Turbulence has been shown to
influence cavitation inception and its effect has been accounted for in models through
the phase-change threshold (Singhal et al. 2002).

The inception of a cavity can be an abrupt event, where the liquid must rupture,
instead of a continuous one. Chen & Israelachvili (1991) and Kuhl et al. (1994)
monitored the elastohydrodynamic deformations of two curve surfaces that move
relative to each other separated by a thin-liquid film of nanoscopic dimensions. A
low-molecular-weight polymer liquid of polybutadiene and bare mica smooth surfaces
having strong adhesion to the liquid were utilized in the tests. When the surfaces move
normally with a slow separation speed they bulge outward, becoming pointed at the
location of the shortest surface separation. This shape indicates the existence of a
tensile stress acting on the surface. If the separation speed is increased beyond a
critical value, a vapour cavity opens in the liquid at the position of the shortest
separation, reducing the tensile stress, while the pointed surfaces suddenly recover
their original shape. Chen & Israelachvili (1991) also used surfactant-coated mica
surfaces, which have weak adhesion to the liquid, resulting in cavity formation at the
liquid–solid interface. Kuhl et al. (1994) considered lateral sliding of a curved surface
over a mostly plane surface with a thin liquid film in-between. Describing the shape
of the sliding element, they observed that: ‘the leading edge becomes more rounded
and lifts off while the trailing edge becomes more pointed.’ For a sliding speed larger
than some critical value, the pointed trailing edge snaps back, while a small cavity
opens in the wake.

Cavitation inception has been observed in liquids undergoing shearing, suddenly
changing the rheogical response of the samples. Bair & Winer (1990) inferred
cavitation inception by detecting yielding of a synthetic oil during rheological tests,
using a rotating concentric cylinder rheometer for a shear stress near the hydrostatic
pressure (1.73 MPa). A similar phenomenon was noticed by Bair & Winer (1992)
for polybutene in simple shear at low pressures (0.1 to 1MPa) for a shear stress of
0.075 MPa in excess of the internal absolute pressure. This magnitude may represent
the amount of tension that this liquid can resist without the opening of a cavity.
Archer, Ternet & Larson (1997) visualized the opening of bubbles within a sample
of low-molecular-weight polystyrene subjected to start-up of steady shearing flow.
They noticed that bubbles seemed to appear near dust particles. As a consequence
of cavitation, the shear stress abruptly drops after it reaches a maximum of 0.1 MPa.
Kottke et al. (2005) observed the inception of cavities in polybutene undergoing
shearing tests using a Couette viscometer. Cavities become visible when the measured
shear stress matches the ambient pressure. According to their principal normal stress
cavitation criterion (PNSCC), this result implies that the sample liquid is not able
to withstand tension. They suggest that cavitation grows from pre-existing nuclei
stabilized in some cracks or crevices on the solid boundaries.
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The previous survey has shown that the idea of minute gas and vapour pockets in
the liquid acting as nucleation sites is plausible and generally accepted. Nevertheless,
a precise definition of the cavitation threshold and a clear description of the wide
gamut of factors that influence this critical value is yet to be accomplished. We
use the words ‘cavitation threshold’ and ‘breaking strength’ as synonymous with the
threshold at which the liquid continuum will fracture. This threshold can vary from
place to place in a sample. The threshold need not be a material parameter. In the
case of heterogeneous nucleation, the cavitation threshold depends on the sample
preparation, the density and nature of nucleation sites. In the case of homogeneous
nucleation, the threshold may be taken as the vapour pressure. The vapour pressure
is a thermodynamic quantity which is defined for uniform isotropic samples for which
the stress tensor is isotropic; for static samples, bubble nucleation is a function of
pressure and nothing else. In this paper, the cavitation threshold, pc, is not necessarily
the vapour pressure; this value is regarded as given and is not a subject for study
here. For liquid which cannot withstand tension, pc = 0.

In § § 4, 5 and 6 we discuss three parallel solutions approached using the maximum
tension criterion, namely, Stokes flow, viscous potential flow and the numerical solu-
tion of the incompressible Navier–Stokes equations, which can be read in any order.

4. Cavitation of Stokes flow
The problem of heterogeneous nucleation of bubbles in the creeping flow of a

viscous liquid sheared between parallel plates has been considered by Kottke et al.
(2005). They find good agreement between experiments and cavitation based on the
maximum tension criterion. These authors indicate:

Liquid failure has been observed in low Reynolds number (Stokes) shear flows where
reduction of the hydrodynamic pressure should not occur. Cavitation in Stokes flows
has implications in lubrication, polymer processing, and rheological measurements.
Such cavitation can be predicted by a principal normal stress cavitation criterion
(PNSCC). We present results of a direct experimental test of the PNSCC. Imaging
of the cavitation events suggests that the cavitation is gaseous and originates from
preexisting nuclei. Crevice-stabilized gas nuclei are assumed, and numerical simulations
are used to investigate the cavitation event for a Newtonian liquid. The inception of
cavitation from a preexisting nucleus, the persistence of suitable nuclei, and the growth
and deformation of shed bubbles are considered.

Ashmore, del Pino & Mullin (2005) study the Stokesian fluid dynamics around a
sphere free to move inside a rotary cylinder filled with viscous liquid, showing that the
inception of cavitation breaks the symmetry of the flow field, creating a net normal
force that prevents contact between the sphere and the boundary. We analyse in this
section stress-induced cavitation when the stream is creeping in the Stokes flow limit.
A sketch of the flow is given in figure 1 using spherical-polar coordinates, showing the
angle α, which sets the stresses into principal directions. For this type of fluid motion,
the principal strain-rates and stresses and their corresponding principal directions
can be determined. The velocity and pressure fields for Stokes flow past a sphere are
given by the expressions

ur = U

[
1 − 3

2

a

r
+

1

2

a3

r3

]
cos θ, uθ = −U

[
1 − 3

4

a

r
− a3

4r3

]
sin θ, (4.1)

p = p∞ − 3µaU

2r2
cos θ. (4.2)
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Figure 1. Streaming flow of a liquid past a sphere of radius a. The spherical-polar coordinates
basis vectors that lie in the plane of motion are shown. The angle α puts the stresses into
principal axes.

The components of the viscous stress tensor 2µD[u] with respect to the spherical-polar
reference frame of figure 1 are determined using (4.1) and the formulae

Drr =
∂ur

∂r
, Dθθ =

(
1

r

∂uθ

∂θ
+

ur

r

)
,

Dϕϕ =

(
ur

r
+

uθ

r
cot θ

)
, Drθ =

1

2

[
r

∂

∂r

(
uθ

r

)
+

1

r

∂ur

∂θ

]
. (4.3)

Thus, the viscous stress tensor 2µD[u] may be written in matrix form as

2µ

⎡
⎢⎣

Drr Drθ 0

Drθ Dθθ 0

0 0 Dϕϕ

⎤
⎥⎦

=
3

2
µU

a3

r4

⎡
⎢⎣

2[(r/a)2 − 1] cos θ − sin θ 0

− sin θ −[(r/a)2 − 1] cos θ 0

0 0 −[(r/a)2 − 1] cos θ

⎤
⎥⎦ , (4.4)

which is rotated by an angle α to obtain its diagonalized form

3

2
µU

a3

r4

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

2

[(
r

a

)2

− 1

]
cosθ − sin θ

sin 2α
0 0

0 1
2

[(
r

a

)2

− 1

]
cos θ +

sin θ

sin 2α
0

0 0 −
[(

r

a

)2

− 1

]
cos θ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(4.5)
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Figure 2. Schematic view of the orientation of the principal directions in the plane of motion
from the Stokes flow analysis (4.6) on the surface of the sphere. In this case, α = −45◦ for
all θ . The major axis in the ellipse represents the maximum tensile stress. The angle α puts
the direction defined by the unit outward normal vector er into the principal direction of the
maximum tensile stress.

The angle of rotation α is related to the polar angle θ by the expression

cot 2α = −3

2

[(
r

a

)2

− 1

]
cot θ. (4.6)

Expression (4.6) can be solved to find the rotation angle α (−0.5 � α/π � 0.5) required
to rotate the polar coordinates (r, θ) such that the direction defined by the unit vector
er coincides with the principal direction associated with the most tensile (or the least
compressive) principal stress on the plane of motion. The orientation of the principal
axes on the surface of the sphere r = a in the plane of motion is illustrated in figure 2.

Expression (2.1) can be modified by adding pc1 to both sides and substituting (4.2)
for the pressure p and (4.5) for the viscous stress 2µD. Defining the cavitation number
and the Reynolds number, respectively, as

K =
p∞ − pc

µU/a
, (4.7)

and

Re =
ρUa

µ
, (4.8)

the following expression results after re-arranging:

T + pc1
µU

a

= −
[
K − 3

2

(
a

r

)2

cos θ

] ⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦ +

3

2

(
a

r

)4

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2

[(
r

a

)2

− 1

]
cos θ − sin θ

sin 2α
0 0

0 1
2

[(
r

a

)2

− 1

]
cos θ +

sin θ

sin 2α
0

0 0 −
[(

r

a

)2

− 1

]
cos θ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(4.9)

Since the right-hand side is diagonal, (4.9) gives the principal stresses. Not surprisingly,
this expression is independent of the Reynolds number. For the Stokes flow solution
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given in (4.9), one can show that at any point the most tensile (least compressive) and
most compressive (least tensile) principal stresses lie on the plane of motion. Suppose
that for a point (r, θ) in the fluid domain, T11 is the maximum of the three principal
stresses. Then, the maximum tension criterion for cavitation (2.6) can be applied to
this fluid motion. Let Kc be the cavitation number in the marginal state determined
by T11 + pc = 0; then (4.9) gives rise to a functional relation Kc = f (r, θ), from which
a contour plot with lines of constant Kc can be readily obtained.

For fluid motions in which inertia effects are dominant, it is customary to use the
dynamic pressure, ρU 2/2, as the normalization factor for pressure. For the purpose
of analysis, one may wish to compare results from creeping flows with results from
fluid motions with higher Reynolds numbers. In such a case, the following relations
can be useful:

p∞ − pc

µU/a
=

Re

2

p∞ − pc

1
2
ρU 2

, (4.10)

for the cavitation number, and

T + pc1

µU/a
=

Re

2

T + pc1
1
2
ρU 2

, (4.11)

for the stress tensor. Thus the quantities defined in terms of the viscous forces scale
with their counterpart defined in terms of the dynamic pressure by a factor of Re/2
everywhere in the fluid domain.

Lines of constant Kc for the marginal state of cavitation according to (4.9) are
presented in § 7 and compared with solutions from direct numerical simulation and
viscous potential flow for Re = 0.01 (see figure 9).

In particular, on the surface of the sphere, r = a, (4.9) reduces to⎡
⎢⎣

T11 + pc 0 0

0 T22 + pc 0

0 0 T33 + pc

⎤
⎥⎦ /(µU/a)

= −K

⎡
⎢⎣
1 0 0

0 1 0

0 0 1

⎤
⎥⎦ +

3

2

⎡
⎢⎣

cos θ + sin θ 0 0

0 cos θ − sin θ 0

0 0 cos θ

⎤
⎥⎦ . (4.12)

It is shown in Appendix A that the maximum of K under the condition T11 + pc = 0
occurs at θ =45◦. Therefore, the position r = a, θ = 45◦ is the location most vulnerable
to cavitation.

The principal axes representation of this tensor is achieved for α = −45◦, which
satisfies (4.6) for r = a. Expression (4.12) can be used to form the cavitation criteria.
The maximum tension is achieved at θ = 45◦. From the right-hand side of (4.12) it
can be noticed that T11 � T33 � T22 for the array shown in its left-hand side for all
0 � θ � π, since sin θ � 0 for this interval. This trend is presented in § 7 (figure 12),
where Kc versus θ/π have been plotted for the three principal stresses on the surface
of the sphere for Re = 0.01.

5. Irrotational flow of a viscous fluid
Kuhn de Chizelle, Ceccio & Brennen (1995) studied the interactions between a

travelling cavity and the potential flow exterior to the thin boundary layer around
an axisymmetric headform. Liu & Brennen (1998) presented a mechanistic model for



Stress-induced cavitation for the streaming motion of a viscous liquid 391

hydrodynamic cavitation event rate for flow over a headform that utilizes the pressure
distribution given by potential flow modified to accommodate boundary layer effects.
There is no literature other than the paper of Funada et al. (2006) on analysis
of stress-induced cavitation using potential flow. The analysis of this problem, given
below, is completely transparent; the effects of vorticity on cavitation on a solid sphere
are mainly associated with the formation of wakes and the displacement of the region
of irrotational flow (see § 6). Considering the irrotational flow of a viscous fluid, the
principal strain-rates and stresses and their corresponding principal directions can be
determined. Then, the maximum tension criterion is applied to evaluate the cavitation
threshold. The theory of viscous potential flow considered here includes the viscous
components in the definition of the state of stress in the flowing liquid.

Irrotational flows of incompressible viscous fluids satisfy the Navier–Stokes
equations and give rise to the usual Bernoulli equation because

µ∇2u = µ∇∇2φ = 0, (5.1)

no matter what the value of µ. The stresses are given by

T = −p1 + 2µ∇ ⊗ ∇φ =
1

3
Tr(T)1 + 2µ∇ ⊗ ∇φ, (5.2)

where p is the average stress given by (2.2).
The flow is axisymmetric and steady and the potential φ(r, θ) satisfies ∇2φ = 0. In

this analysis, spherical-polar coordinates as shown in figure 1 are utilized.
The potential for this flow is

φ = U

(
r +

1

2

a3

r2

)
cos θ. (5.3)

The velocity u = erur + eθuθ is given by

ur =
∂φ

∂r
= U

(
1 − a3

r3

)
cos θ, uθ =

1

r

∂φ

∂θ
= −U

(
1 +

1

2

a3

r3

)
sin θ. (5.4)

Note that the no-slip condition must be relaxed for viscous potential flow. So, the
boundary layer is not resolved. The pressure is given by

p = p∞ + ρ
U 2

2
− ρ

2

(
u2

r + u2
θ

)
= p∞ + ρ

U 2

2

[
1 −

(
1 − a3

r3

)2

cos2 θ −
(

1 +
1

2

a3

r3

)2

sin2 θ

]
, (5.5)

where p∞ is the constant value of the pressure at infinity. The non-zero components
of the viscous stress

2µD[∇φ] (5.6)

are determined using the standard formulae (4.3) and the velocity field (5.4). This
yields to the matrix of components

2µ

⎡
⎣Drr Drθ 0

Drθ Dθθ 0
0 0 Dϕϕ

⎤
⎦ = 3µU

a3

r4

⎡
⎣2 cos θ sin θ 0

sin θ −cosθ 0
0 0 −cosθ

⎤
⎦ , (5.7)
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which can be rotated into diagonal form through an angle α satisfying

tan 2α =
2

3
tan θ. (5.8)

From (5.8) we look for the angle α that maps, by a rotation with axis eϕ , the direction
given by the unit vector er into the principal direction corresponding to the most
tensile (or the least compressive) principal stress in the plane of the motion. Without
lack of generality, we consider this angle α to be in the interval −0.5 � α/π � 0.5.

The diagonal form of 2µ∇ ⊗ ∇φ is given by

3µU
a3

r4

⎡
⎢⎢⎢⎢⎣

1
2
cos θ +

sin θ

sin 2α
0 0

0 1
2
cos θ − sin θ

sin 2α
0

0 0 − cos θ

⎤
⎥⎥⎥⎥⎦ . (5.9)

At θ = π/2, where the pressure is smallest, α = π/4 and the diagonal form is

3µU
a3

r4

⎡
⎣1 0 0

0 −1 0
0 0 0

⎤
⎦, (5.10)

giving rise to tension and compression.
Following the analysis presented in § 2, we next consider the whole stress using

(5.2), which may be written as

T + pc1 = (−p + pc)1 + 2µ∇ ⊗ ∇φ (5.11)

with the addition of the cavitation threshold pc. After arranging, expression (5.11)
becomes

T + pc1
1
2
ρU 2

= −
[
K + 1 −

(
1 − a3

r3

)2

cos2 θ −
(

1 +
a3

2r3

)2

sin2 θ

] ⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦

+
3

Re

(a

r

)4

⎡
⎢⎢⎢⎢⎣

cos θ +
2 sin θ

sin 2α
0 0

0 cos θ − 2 sin θ

sin 2α
0

0 0 −2 cos θ

⎤
⎥⎥⎥⎥⎦ (5.12)

where

K =
p∞ − pc

1
2
ρU 2

(5.13)

is the cavitation number and the Reynolds number is given in (4.8).
For the viscous potential flow solution (5.12), one can show that at any point the

most tensile (least compressive) and most compressive (least tensile) principal stresses
lie in the plane of motion (i.e. the plane where the velocity vector is contained).
Suppose now that T11 is the largest of the three principal values of stress. Then,
according to the maximum tension theory, the locus of the cavitation threshold is
given by

T11 + pc = 0,
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Figure 3. Rotation angle α/π versus angular position θ/π, derived from tan 2α =2/3 tan θ
for irrotational flow of a viscous fluid. A linear approximation of this graph is α =0.5θ . A
cavitation bubble will open asymmetrically with the axis of maximum tension rotated through
an angle α at each point r, θ as in this figure.
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Figure 4. Schematic view of the orientation of the principal directions in the plane of motion
for irrotational flow of a viscous fluid according to (5.8) on the surface of the sphere. The
major axis in the ellipse represents the maximum tensile stress. The angle α puts the direction
defined by the unit outward normal vector er into the principal direction of the maximum
tensile stress.

giving rise to isolines (a/r, θ) = f (Kc, Re) for the cavitation threshold. The largest
values of the viscous irrotational stress are at the boundary r = a where the neglected
vorticity is largest. In Appendix A, it is shown that θ = 0 for very low Re and θ = π/2
for very high Re are the points most vulnerable for cavitation under the respective
conditions.

Equation (5.12) gives the form of the diagonalized stress tensor at each point
(r, θ) in the axially symmetric flow. T11, T22 and T33 = Tϕϕ are principal stresses in
the principal axes coordinates with bases e1, e2, eϕ . In the present case, the angle
α changes with θ , tan 2α =2/3 tan θ . The solution of this equation (5.8) is displayed
graphically in figure 3. A representation of the orientation of the principal axes in the
plane of motion at the surface of the sphere r = a as predicted by (5.8) is presented
in figure 4.

It is apparent from (5.12) that the largest stresses are at the boundary of the sphere
where r = a. Certainly the liquid will cavitate when K = (p∞ − pc)/(ρU 2/2) < 0; only
K > 0 is of interest. Using now the maximum tension criterion, we see that cavitation
occurs for 0 <K <Kc and the fluid is most at risk to cavitation for θ at which Kc(θ)
is greatest. For viscous potential flow, this most dangerous θ is at θ = 0 when Re

is small and at θ = π/2 when Re is large. It follows that the place most at risk to
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cavitation runs from the rear stagnation point at θ = 0 when Re is small to θ = π/2
when Re is large.

In § 7 contour plots with lines of constant K representing the cavitation threshold
from (5.12) for various Re are presented and compared with the results from the
numerical simulation and the Stokes solution for the lowest Re (see figures 9, 10 and
11). Also, in § 7 we have plotted Kc versus θ/π for the three principal stresses at r = a

for Re = 0.01, 10 and 100, comparing these results with the corresponding graphs
obtained with direct numerical simulation and, for Re = 0.01, with the Stokes flow
analysis (see figures 12, 13 and 14).

6. Numerical solution of the incompressible Navier–Stokes equations
Numerical investigations of the fundamental aspects of cavitation formation from

a wall-stabilized nucleus (Kottke et al. 2005 and references therein) or the interaction
between the flow field and travelling cavitation bubbles (Kuhn de Chizelle & Brennen
1993) can be encountered in the literature. On the other hand, some effort has been
devoted to developing engineering tools based on computational fluid dynamics to
model cavitation through different approaches of the multiphase flow (Singhal et al.
2002; Farrell 2003). In this section, the numerical simulation of streaming flow past
a sphere is carried out for various values of the Reynolds number Re as defined
before. The hydrodynamics is predicted for a single-phase, Newtonian, non-cavitating
fluid. The velocity and pressure fields computed in this numerical study are used to
determine the principal stresses and directions. Therefore, the cavitation criteria can
be formed based on these results and a comparison with the theoretical models from
§ 4 and § 5 can be presented.

6.1. Numerical set-up and flow field computations

The numerical solution of the incompressible unsteady Navier–Stokes equations for
streaming flow past a sphere is performed using the computational fluid dynamics
package Fluent R© 6.1. This program is based on the finite volume method, which is
utilized to integrate the governing equations, and then a set of algebraic equations
is constructed. An implicit segregated scheme is used to solve the discretized
governing equations sequentially. The convective term in the momentum equation
is discretized using a Quadratic Upwind Interpolation for Convective Kinematics
(QUICK). The pressure–velocity coupling is accomplished through the Pressure-
Implicit with Splitting of Operators (PISO) scheme. The time integration of the
unsteady momentum equations is carried out using a second-order approximation.

We are interested in the steady-state limit of the solution. The interval for the
Reynolds number based on the free-stream velocity U and the radius of the sphere as
considered in this simulation is 0 <Re � 100. For this interval of Re, the steady-state-
flow motion is described as axisymmetric (see, for instance, Johnson & Patel 1999).
Then, a semi-O-type mesh is employed in the numerical simulations. Figure 5 shows
a scheme of the computational domain as well as the boundary conditions, where the
horizontal edge represents the axis of symmetry and the stream flows from left to
right. The outflow boundary condition implies that the diffusion flux in the direction
normal to the exit surface is zero for all variables. Therefore, the flow variables at
the outflow plane are computed from inside the domain through extrapolation. The
interested reader is referred to the Fluent R© 6.1’s User Guide for details about the
numerical schemes and boundary conditions available in the package. Quadrilateral
cells in a structured mesh are used to discretize the domain. The position of the outer
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Figure 5. Computational domain showing the boundary conditions.

spherical edge of the computational domain is fixed as H = 150a measured from the
centre of the sphere. For the selected geometry, the number of cells of the domain
is 11680 and the number of nodes is 11907. Using a similar node density, a larger
domain was considered by increasing the distance from the centre of the sphere to the
outer spherical edge (H = 200a). The comparison of the drag coefficient computed for
these two computational domains indicates that the relative difference is below 1%
for Re = 0.01 and Re = 100. Therefore, we decided to use the mesh with H = 150a to
perform further computations. The smallest cells of the domain were located attached
to the surface of the sphere and their size increases as the distance from the wall
increases. Good resolution of the boundary layer attached to the surface is provided
with the selected cells’ sizes. The dimensionless time step used in the simulations
was ∆tU/a =0.04. In addition, tests were also conducted with a dimensionless time
step of 0.02 and a much finer grid rendering results very close to the previous ones.
The initial velocity field is set equal to the free-stream velocity everywhere in the
computational domain.

With these settings, computations are performed for different values of the Reynolds
number, Re = 0.01, 10, 25, 50, 75 and 100. Therefore, the steady axisymmetric
flow conditions reported in the literature from experiments and three-dimensional
simulations are expected in all the cases, being consistent with our numerical set-up.

The validation of the numerical set-up is carried out by comparing our numerical
results for various parameters with results from different sources as compiled and
presented in the work of Johnson & Patel (1999). These parameters are the drag
coefficient, the separation angle and the separation length. Their definition and the
results of the comparison are presented in Appendix B. Satisfactory agreement with
previous numerical and experimental results is obtained. Furthermore, the computed
flow field is presented in this appendix through the streamline pattern and contours
of vorticity for three values of the Reynolds number.

6.2. Principal stresses and cavitation inception

In order to compute the principal stresses and directions from the velocity and pressure
field obtained from the numerical simulations, consider the reference frame shown in
figure 6 for axisymmetric flow past a sphere. This reference frame is defined by the
cylindrical coordinates (z′, r ′, θ ′). The corresponding vector basis is defined by the set
of unit vectors {ez′, er ′, eθ ′ }. The vector eθ ′ is normal to the page in figure 6(a). The
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Figure 6. Sketch showing (a) a representation of the axisymmetric flow past a sphere of
radius a, and (b) cylindrical coordinates.

cylindrical coordinates have been used here instead of the spherical-polar coordinates
utilized in previous sections, since the computational solver applied for the direct
numerical simulation imposes this system of coordinates for axisymmetric problems
with the direction of the axis of symmetry indicated by ez′ . Therefore, the package
computes the derivatives of the components of the velocity with respect to this
cylindrical reference frame.

The components of the viscous stress tensor 2µD with respect to this set of vectors
may be written in matrix form as

2µ

⎡
⎢⎣

Dz′z′ Dz′r ′ 0

Dz′r ′ Dr ′r ′ 0

0 0 Dθ ′θ ′

⎤
⎥⎦ , (6.1)

where

Dz′z′ =
∂uz′

∂z′ , Dr ′r ′ =
∂ur ′

∂r ′ , Dθ ′θ ′ =
ur ′

r ′ , Dz′r ′ =
1

2

(
∂ur ′

∂z′ +
∂uz′

∂r ′

)
(6.2)

and Dr ′θ ′ = Dθ ′r ′ = Dz′θ ′ = Dθ ′z′ = 0.
The diagonalized form of the stress 2µD can be found by rotating the coordinates

(z′, r ′) through an angle β such that (6.1) becomes

2µ

⎡
⎢⎢⎢⎢⎣

1
2
(Dz′z′ + Dr ′r ′) +

Dz′r ′

sin 2β
0 0

0 1
2
(Dz′z′ + Dr ′r ′) − Dz′r ′

sin 2β
0

0 0 Dθ ′θ ′

⎤
⎥⎥⎥⎥⎦ . (6.3)

The rotation angle β such that the direction defined by the unit vector er ′ reaches the
principal direction corresponding to the maximum strain-rate in the plane of the fluid
motion is related to the components of the strain-rate tensor given in (6.2) according
to the expression

tan 2β =
2Dz′r ′

Dz′z′ − Dr ′r ′
. (6.4)

The angle α associated with the rotation with axis eϕ of the orthogonal reference
frame defined by the sphere’s outward normal unit vector er and the sphere’s
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Figure 7. Rotation angle α as defined in (6.5) versus θ/π on the surface of the sphere, r/a = 1,
from the numerical solution for (a) Re = 0.01, (b) Re = 10, (c) Re = 100. The position θ = 0
corresponds to the rear stagnation point. Notice that for Re = 100 the jump on the curve
occurs at θ ≈ 63◦, which coincides with the corresponding separation angle θs (see figure 16).

tangential unit vector eθ (figure 1) is related to the angle β associated with the
rotation with axis eθ ′ of the cylindrical coordinates defined by ez′ and er ′ (figure 6)
through the formula

α = β − θ. (6.5)

The angle α corresponds to the rotation of the spherical-polar coordinates (r, θ) in
the plane of motion such that the direction of the unit vector er coincides with the
principal direction associated with the most tensile (or the least compressive) principal
stress. The angle α is restricted to the interval −0.5 � α/π � 0.5. The rotation angle
α/π as a function of the polar angle θ/π on the surface of the sphere r = a is computed
from the numerical simulation results and is presented for various Re in figure 7.
For Re = 0.01 and Re = 10 the angle α = −45◦ coincides with the principal direction
of maximum tension for simple shearing. This result was also obtained in the Stokes
flow solution and is enforced by the no-slip condition. In the case of Re = 100, the
angle α shows a similar behaviour from the front stagnation point until the point of
separation. Beyond this point, the principal axis rotates 90◦ and the direction of the
maximum principal stress is reached for α = 45◦. Figure 8 presents a sketch showing
the orientation of the principal axes on the plane of motion at different angular
positions on the surface of the sphere for Re =100.

Recalling (2.1), the total stress tensor for an incompressible Newtonian fluid can
be written as

T = −p1 + 2µD.
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Figure 8. Schematic view of the orientation of the principal directions in the plane of motion
on the surface of the sphere according to (6.5) from direct numerical simulation of the
Navier–Stokes equations and Re = 100. In this case, α ≈ −45◦ for θ > θs and α ≈ 45◦ for θ < θs

(from figure 7(c)). The angle θs refers to the separation angle measured from the rear stagnation
point. The major axis in the ellipse represents the maximum tensile stress. The angle α puts
the direction defined by the unit outward normal vector er into the principal direction of the
maximum tensile stress.

The pressure p can be expressed in terms of the pressure coefficient, which is
defined as

cp =
p − p∞

1
2
ρU 2

, (6.6)

where p∞ is a constant reference pressure corresponding to the limiting pressure as
r → ∞. Then, using (6.6), expression (2.1) becomes

T = −p∞1 − 1
2
ρU 2cp1 + 2µD. (6.7)

Adding pc1 to both sides of (6.7) yields

T + pc1 = −(p∞ − pc)1 − 1
2
ρU 2cp1 + 2µD, (6.8)

where pc is the cavitation threshold. After re-arranging, (6.8) may be written as

T + pc1
1
2
ρU 2

= −(K + cp)

⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦

+
4

Re

⎡
⎢⎢⎢⎢⎢⎣

1
2
(D̃z′z′ + D̃r ′r ′) +

D̃z′r ′

sin 2β
0 0

0 1
2
(D̃z′z′ + D̃r ′r ′) − D̃z′r ′

sin 2β
0

0 0 D̃θ ′θ ′

⎤
⎥⎥⎥⎥⎥⎦ , (6.9)

where the dimensionless strain-rate tensor is defined as D̃ = D(a/U ), and K is the
cavitation number as presented in (5.13). The Reynolds number is defined as in (4.8).
The principal stresses are thus determined by (6.9).

The velocity field obtained from the numerical solution is used to compute (6.2)
and then all the required quantities, including the principal stresses, also utilizing the
numerical pressure field. The derivatives of the velocity components in cylindrical
coordinates required in (6.2) are approximated by the computational fluid dynamics
package using the discrete values of the velocity components obtained from the
numerical solution stored at every node.
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Consider (6.9) and let T11 be the maximum of the principal stresses. Then, the
maximum tension criterion (2.6) can be formed. Notice that the maximum principal
stress T11 may be given by the stress normal to the plane of motion, Tϕϕ . In the
next section, plots of lines of constant K obtained from the numerical simulations
corresponding to the cavitation threshold for various Re are presented (figures 9, 10
and 11). In addition, the critical values of the cavitation threshold Kc versus θ/π for
the three principal stresses on the surface of the sphere from the numerical results
are shown and compared with the viscous potential flow solution and, for a low
Re =0.01, with the Stokes flow solution (figures 12, 13 and 14).

7. Discussion
The paper is motivated by the desire to understand the effect of viscosity on

stress-induced cavitation of liquids. The study is performed in the framework of
direct numerical simulation of the incompressible Navier–Stokes equations to predict
the flow field. Analyses are also presented based on the irrotational flow of viscous
fluids around a sphere and, for low Reynolds number flows, on the Stokes flow limit
solution. These formulations allow for a particularly transparent analysis in which
all the predictions are given by simple explicit expressions. These formulations relate
two dimensionless parameters, the cavitation number associated with the inception
of cavitation and the Reynolds number. In the case of the Stokes flow solution, the
formulation is made independent of the Reynolds number by choosing a characteristic
viscous stress scale. The results of this investigation apply to any viscous Newtonian
liquid. For all the cases considered, the results from the simplified analytical models
are contrasted with the computations from direct numerical simulation.

The main points about stress-induced cavitation, in particular the role of the
maximum tensile stress in principal axes coordinates, and the comparison of this
criterion with the criterion depending only on pressure and the most conservative one
which requires that all the principal stresses be in tension, are very clearly expressed in
the simple analyses based on either viscous potential flow or Stokes flow. In addition,
the criteria for cavitation can be neatly formed and evaluated using the velocity and
pressure fields from numerical simulations of the governing equations.

Contour plots of lines of constant critical cavitation number Kc from the maximum
tension criterion are presented in figures 9, 10 and 11 for Re =0.01, 10 and 100,
respectively. In these figures, the results obtained from the analysis of viscous potential
flow and from direct numerical simulation are included. For Re = 0.01, the Stokes
flow solution is also presented for comparison. Notice that the results from the
Stokes limit and the results from direct numerical simulation are very similar, as
expected (figures 9a and c). The analytical models predict that the risk of cavitation
is higher for low-Reynolds-number flows. This result is confirmed by the numerical
experiments. The comparison of the cavitation regions for viscous potential flow and
numerical simulation of the Navier–Stokes equations (NS) for Re = 10 and 100 is
interesting; the cavitation regions shift to the right for NS because of the formation
of wakes not present in the irrotational flow solution. As Re increases, the contour
plots corresponding to viscous potential flow become symmetric with respect to an
axis passing through the centre of the sphere, perpendicular to the direction of the
free-stream velocity, since the contribution of the viscous stress vanishes and the
classical ‘inviscid’ potential flow result is approached. As we mentioned, in the case
of the numerical solution of NS, the principal stress in the normal direction to the
plane of motion may become the largest in some regions of the domain. In such a
case, the cavitation inception is determined by this principal stress.
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The pressure criterion can readily be presented in dimensionless form as Kc = − cp,
in the marginal state separating cavitation from no cavitation. Using the pressure
field from the numerical solution of NS equations, contour plots of Kc following the
pressure criterion are presented in figures 9(d), 10(c) and 11(c). Comparison of these
results with the corresponding results from the maximum tension criterion (figures 9c,
10b and 11b) indicates that the latter shifts the region of higher critical cavitation
number upstream on the surface of the sphere. The difference is notorious for the
lowest Re = 0.01. In this case, the region of higher Kc is predicted at 45◦ from the rear
stagnation point by the maximum tension criterion, whereas the pressure criterion,
indicates that the fluid is at the most risk to cavitation (i.e. maximum Kc) at the
rear stagnation point. This result can also be obtained using the pressure field in
(4.2) for Stokes flow to define the pressure coefficient cp. Furthermore, notice that
the maximum tension criterion is more conservative than the pressure criterion, since
Kc,max from the former approach is larger than Kc,max from the latter. As Re increases,
both approaches tend to the same distribution since the effects of viscosity carried by
the viscous deviator are substantially lessened.

In particular for r = a, the surface of the sphere, the profiles of the cavitation
number Kc from the maximum tension criterion as a function of θ/π are computed
independently for the three principal stresses and presented in figures 12, 13 and 14
for Re = 0.01, 10 and 100, respectively. In each of these figures, the comparison is
performed between the VPF solution and the results from the numerical analysis. Also,
the predictions from the pressure criterion Kc = −cp, using the numerical solution of
NS equations, are presented. For Re = 0.01, the results from the Stokes flow limit are
included as well. In these figures, T11 represents the maximum principal stress and
T11 � T33 � T22. At the surface of the sphere, the pressure criterion coincides with
the curve for which T33 + pc = 0 because of the no-slip condition. The discrepancies
between the predictions from the maximum tension criterion and the pressure criterion
discussed above are better appreciated when observed at the surface of the sphere,
in particular for the lowest Re = 0.01 (figure 12c). In this case, the maximum tension
criterion predicts the location of the point where Kc is maximum at θ = 45◦ using the
pressure field from the numerical simulations (the Stokes approximation yields the
same result as shown in Appendix A). With this pressure distribution, the pressure
criterion predicts the location of Kc,max at θ = 0◦ (the rear stagnation point). The
same position is determined from the maximum tension criterion using the pressure
field from VPF, though the maximum Kc is much higher in this case (figure 12b).
Figures 13 and 14 show that the results from the maximum tension criterion tend to
the results from the pressure criterion theory for the inception of cavitation as Re

increases.
This study has focused on cavitation by homogeneous nucleation. However,

important implications are found for heterogeneous nucleation. The results show
that the K value is maximized at the surface of the sphere and that viscous normal
stresses are important there. This can explain the greater likelihood of heterogeneous
nucleation. Furthermore, if the flow around the sphere in figure 1 contained particles
that were sufficiently small so that the flow is not modified substantially in a global
sense, certain inferences can be made. The normal compressive stress which is locally
reduced (or made tensile) by flow around the sphere can be further reduced due
to relative motion between a small particle and the liquid. That is, in a frame of
reference fixed to a moving small particle, the liquid will, in some domain, accelerate
around and past the small particle, thereby further increasing the local K value when
viewed with a finer resolution than we have allowed in our analysis. So, the likelihood
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Figure 9. Contours of critical cavitation number Kc given by the condition T11 + pc = 0
according to the maximum tension criterion for a Reynolds number Re = 0.01 from (a) Stokes
flow (4.9); (b) the irrotational flow of a viscous fluid (5.12), and (c) numerical solution (6.9);
the pressure criterion given by Kc = −cp is shown in (d) using the numerical pressure field. The

cavitation number K is defined in terms of the dynamic pressure ρU 2/2. For a given cavitation
number K , cavitation occurs in the region where K <Kc. A different normalization of the
cavitation number and of the critical cavitation number is used for Stokes flow (4.7) rather
than the normalization used for the other cases (5.13). The contour lines for the normalization
of p∞ − pc with the viscous–stress scale µU/a in (4.7) are presented in parenthesis in (a). The
ratio of the normalization factors is Re/2 (4.10).
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Figure 10. Contours of critical cavitation number Kc given by the condition T11 + pc = 0
according to the maximum tension criterion for a Reynolds number Re = 10 from (a) the
irrotational flow of a viscous fluid (5.12), and (b) numerical solution (6.9); the pressure
criterion given by Kc = −cp is shown in (c) using the numerical pressure field. The cavitation

number K is defined in terms of the dynamic pressure ρU 2/2. For a given cavitation number
K , cavitation occurs in the region where K <Kc.

of both homogeneous and heterogeneous nucleation is increased by the presence of
these small particles.

Irrotational motions of viscous liquids account for viscous stresses, but not for
vorticity created by the no-slip condition at the boundary of solids, which is neglected.
The analysis is not restricted to small viscosity, but is restricted to small vorticity.
In steady flows over a sphere the effects of vorticity are greatest in the wake regions
behind the separated boundary layers. The irrotational theory cannot be used in
the wake region. However, this theory predicts that the liquid is at greatest risk to
cavitation close to θ =90◦ when Re is high, which is in good agreement with numerical
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Figure 11. Contours of critical cavitation number Kc given by the condition T11 + pc = 0
according to the maximum tension criterion for a Reynolds number Re = 100 from (a) the
irrotational flow of a viscous fluid (5.12), and (b) numerical solution (6.9); the pressure criterion
given by Kc = −cp is shown in (c) using the numerical pressure field. The cavitation number

K is defined in terms of the dynamic pressure ρU 2/2. For a given cavitation number K ,
cavitation occurs in the region where K < Kc.

simulation (see figures 13 and 14). Moreover, the cavitation region computed from the
irrotational theory is in fair agreement with the numerical simulations with Re =10
and Re = 100 for K > 0.5 (see figures 10 and 11). On the front face of the sphere
including the neighbourhood of the position θ = 90◦, we expect a thin boundary layer
and an exterior flow closely irrotational for high Reynolds numbers (e.g. Re = 100). A
good discussion of this can be found in White (2006). There it is shown that the skin
friction based on the surface velocity of the irrotational flow is close to the actual
friction near the front stagnation point and not so hugely different up to the point of
separation. The irrotational flow theory given here is off the mark, not because the
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Figure 12. Critical cavitation number Kc versus angular position θ/π on the surface of the
sphere r = a for Re =0.01 and (a) Stokes flow (4.12); (b) the irrotational flow of a viscous
fluid (5.12), and (c) numerical solution (6.9). In addition, the pressure criterion Kc = −cp has
also been included in (c) with the symbol �. Kc is defined in terms of the dynamic pressure
ρU 2/2. In the figure, three values of the critical cavitation number Kc are determined for every
polar angular position θ , with T11 + pc = 0, T22 + pc = 0 and T33 + pc = 0. The position θ = 0
corresponds to the rear stagnation point. For all values of Re, we consider T11 as the most
tensile principal stress and T11 � T33 � T22. By multiplying the values in the vertical axis by
a factor of Re/2, the results for Stokes flow in (a) can be readily presented in terms of the
viscous stress scale µU/a instead, according to (4.10).

flow is rotational but due to the displacement of the irrotational flow by the separated
wake.

The theory of stress-induced cavitation does not require one to assume irrotational
flow; we used the same theory for Stokes flow and Navier–Stokes flow. The predictions
for Stokes flow are for very thick fluids creeping around a sphere. We find that the
cavities would develop at θ =45◦, at −45◦ from the direction of shearing. The theory
of stress-induced cavitation can be applied to exact numerical simulation, even for
turbulent flow.

A clear description of the effects of viscosity in the inception of cavitation was
reported by Harvey et al. (1947). They carried out experiments of withdrawal of a
rod from a liquid container similar to those depicted in § 3, but using gas-nucleus-free
corn syrup (2010 cP and density 1.383 at 23◦C) instead of water. Two rods of different
materials, aluminium and glass, were drawn from the liquid at a maximum speed of
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Figure 13. Critical cavitation number Kc versus angular position θ/π on the surface of the
sphere r = a for Re = 10 and (a) the irrotational flow of a viscous fluid (5.12), and (b) numerical
solution (6.9). In addition, the pressure criterion Kc = −cp has also been included in (b) with
the symbol �. In the figure, three values of the critical cavitation number Kc are determined
for every polar angular position θ , with T11 +pc = 0, T22 +pc = 0 and T33 +pc = 0. The position
θ = 0 corresponds to the rear stagnation point. For all values of Re, we consider T11 as the
most tensile principal stress and T11 � T33 � T22.
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Figure 14. Critical cavitation number Kc versus angular position θ/π on the surface of the
sphere r = a for Re = 100 and (a) the irrotational flow of a viscous fluid (5.12), and (b)
numerical solution (6.9). In addition, the pressure criterion Kc = −cp has also been included
in (b) with the symbol �. In the figure, three values of the critical cavitation number Kc are
determined for every polar angular position θ , with T11 + pc = 0, T22 + pc = 0 and T33 + pc = 0.
The position θ = 0 corresponds to the rear stagnation point. For all values of Re, we consider
T11 as the most tensile principal stress and T11 � T33 � T22.

12.2 m s−1. Experiments showed that several minute bubbles formed at the end and
side of the rod at the very start of its motion, growing into a long cylindrical bubble.
After the rod left the container, the bubble started to collapse. Experiments were
repeated for a syrup having viscosity of 56 cP at 25◦C and for citrated cat blood
plasma, having viscosity slightly greater than water, and no cavities appeared in any
case. A maximum rod velocity of 18 m s−1 was reached in both experiments. These
results suggest that cavitation inception presumably induced by the motion of an
immersed body is promoted by increasing the liquid viscosity.
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As noted by Joseph (1998), the effect of viscosity in cavitation phenomena has been
indirectly accounted for through its impact on the structure of the fluid motion, as in
the case of separation spots and pressure profiles. For flow past axisymmetric bodies
that exhibit laminar boundary layer separation, Arakeri & Acosta (1973) observed
that cavitation inception occurs within the region of separated flow. Similarly, Franc &
Michel (1985) noticed that detachment of cavities occurs in the recirculation zone,
behind laminar boundary layer separation, instead of near the point of minimum
pressure for flow past circular and elliptical cylinders. Photographs included in the
book by Young (1989) for flow past a 1-inch-diameter sphere show that inception
of cavitation occurs in the shear layer formed between the main stream and the
recirculation zone in the wake behind the body. Decreasing the cavitation number
associated with the experiment expands the region of cavitation over the surface of
the shear layer. By comparing figure 17(c) for the streamlines and figure 11(b) for the
critical cavitation number distribution in the case of Re = 100, one can conjecture,
on qualitative grounds, that cavitation events may be generated as travelling nuclei
pass through the region of high Kc (the equator of the sphere), where their growth is
triggered, and immediately enter the shear layer region carried by the external flow,
while becoming visible to the unaided eye. Inside the recirculation zone, the higher
values of the critical cavitation number occur in the neighbourhood of the point of
boundary layer separation (about θ = 60◦; see figures 16b and 17c), which is also a
low-velocity region. Thus, it seems likely that cavities become visible in this region of
the wake.

The main prediction of this work is that highly viscous fluids are at greater risk to
cavitation at a fixed cavitation number. This prediction appears to be new since the
question seems, surprisingly, not to have been addressed in the theoretical cavitation
literature.
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Appendix A. An analysis for maximum K

Here we look for the angular position on the surface of the sphere at which
the maximum value of the cavitation number K occurs. This position is the most
vulnerable to cavitation.

For the potential flow solution, the stress tensor is given in (5.12). Suppose that T11

is the maximum tensile stress such that T11 � T33 � T22. If we consider the surface of
the sphere r = a and use the cavitation criterion T11 + pc = 0, we obtain from (5.12)

K =
9

4
sin2 θ − 1 +

3

Re

(
cos θ +

2 sin θ

sin 2α

)
, (A 1)

Considering the expression for α given in (5.8),

tan 2α =
2

3
tan θ, (A 2)
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we can write (A 1) as

K =
9

4
sin2 θ − 1 +

3

Re

[
cos θ + 3 cos θ

√
1 +

4

9
tan2 θ

]
, (A 3)

for 0 � θ � π/2, whereas

K =
9

4
sin2 θ − 1 +

3

Re

[
cos θ − 3 cos θ

√
1 +

4

9
tan2 θ

]
, (A 4)

for π/2 <θ � π. Taking the derivative of K in (A 3), we find

∂K

∂θ
=

9

2
sin θ cos θ − 3

Re
sin θ

[
1 +

5√
9 + 4 tan2 θ

]
. (A 5)

It is obvious that θ = 0 is a solution of ∂K/∂θ = 0 at any Reynolds number. We
compute ∂2K/∂θ2 to determine whether K at θ = 0 is a local maximum or minimum.
From (A 5), the second derivative of K is

∂2K

∂θ2
=

9

2
cos 2θ +

60 sec θ tan2 θ

Re
(
9 + 4 tan2 θ

)3/2
− cos θ

Re

(
3 +

15√
9 + 4 tan2 θ

)
. (A 6)

When θ = 0, we have

∂2K

∂θ2
(θ = 0) =

9

2
− 8

Re
. (A 7)

Thus ∂2K/∂θ2 at θ = 0 is negative when Re < 16/9 and positive when Re > 16/9. This
result indicates that K at θ = 0 is a local maximum when Re < 16/9 and is a local
minimum when Re > 16/9. Substitution of θ = 0 in (A 3) yields

K(θ = 0) =
12

Re
− 1, (A 8)

which is a local maximum of K for Re < 16/9 in the interval 0 � θ � π/2.
Besides θ = 0, there is a second solution for ∂K/∂θ =0 which depends on Re

and has a very complicated expression. If the value of Re is very high, then
∂K/∂θ ≈ 9 sin(2θ)/4. The second solution is close to θ = π/2. We also notice that
∂2K/∂θ2 < 0 at θ = π/2 when Re is high. Therefore, the maximum value of K occurs
near θ = π/2 when Re is high in the interval 0 � θ � π/2.

Similarly, from (A 4), K has a local maximum at θ = π when Re < 4/9 and has a
local minimum at this position when Re > 4/9 in the interval π/2 < θ � π. Substitution
of θ = π into (A 4) gives this local maximum for Re < 4/9 in the interval π/2 < θ � π,

K(θ = π) =
6

Re
− 1. (A 9)

A second solution, as a complicated function of Re, can be written for ∂K/∂θ = 0.
For high Re, this solution gives that K goes to a maximum when θ approaches π/2.

A comparison of (A 8) and (A 9) allows us to discard the position θ = π.
Summarizing our findings for viscous potential flow, K reaches a maximum at θ =0
when Re < 16/9 in the interval of interest 0 � θ � π. In addition, in the limit of high
Re, K is maximum at θ = π/2 in this interval. These results are verified in figures 9(b)
and 12(b) for low Re and figures 11(a) and 14(a) for high Re.
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U θs xs

Figure 15. Sketch showing two geometric parameters of the axisymmetric flow past a
sphere: polar separation angle θs and separation length xs .

For the Stokes flow solution, the stress tensor on the surface of the sphere is given
in (4.12). With T11 + pc = 0, we obtain

K =
3

2
(cos θ + sin θ). (A 10)

The maximum K occurs at θ = π/4 or 45◦. Thus θ =45◦ is the location most vulnerable
to cavitation on the surface of the sphere. This result is illustrated in figures 9(a) and
12(a) when Re = 0.01.

Appendix B. Validation of the numerical set-up
The numerical strategy implemented in this work is validated by comparing our

results with those from various publications collected by Johnson & Patel (1999). The
evaluation is performed in terms of the drag coefficient and two relevant geometric
parameters of the flow, namely, the separation angle θs and the separation length xs

as a function of the Reynolds number Re. The separation angle θs represents the
angle, measured from the rear stagnation point, where the flow separates from the
sphere. The separation length xs represents the distance along the axis of symmetry,
measured from the rear stagnation point, where the separated flow rejoins. These
two parameters, the separation angle and length, are described in figure 15. The drag
coefficient is defined as

CD =
Fz′

1
2
ρU 2πa2

, (B 1)

where Fz′ represents the force that the fluid motion produces on the body in the
streamwise direction.

The data considered in this study embrace the experimental results of Taneda (1956)
and the numerical results of Pruppacher, Le Clair & Hamiliec (1970), Tomboulides
(1993) and Magnaudet, Rivero & Fabre (1995). In addition, the results presented by
Roos & Willmarth (1971) as well as the data owed to Johnson & Patel (1999) are
included. Excellent agreement between our numerical values and the corresponding
results from the literature is observed in figure 16.

Once the velocity field has been determined from the numerical solution of the
governing equations, the stream function and vorticity fields can be computed by
the computational fluid dynamics package using the velocity components known
at every node. The stream function is expressed in terms of the connection between
conservation of mass and the definition of streamlines. Since a streamline is determined
by a constant value of the stream function, the mass rate of flow between two
streamlines is given by the difference of the stream function’s values corresponding to
these streamlines (Fluent 6.1 User’s Guide 2003). Figure 17 presents the streamlines
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Figure 16. Comparison between the numerical results from this study with data from the
literature: (a) Drag coefficient CD; (b) polar separation angle θs (zero at the rear stagnation
point), and (c) separation length xs versus Re. All the data from previous works are extracted
from the paper of Johnson & Patel (1999).

(a)
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(c)

Figure 17. Streamline pattern ψ/aU 2 for streaming flow past a sphere from the numerical
solution for various Reynolds numbers: (a) Re = 0.01, (b) Re = 10, (c) Re = 100. The streamline
ψ =0 corresponds to the axis of symmetry and the sphere’s surface.
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Figure 18. Vorticity contours ωa/U for various Re from the numerical solution: (a) Re = 0.01,
(b) Re = 10, (c) Re = 100. The solid lines (for Re = 100) represent contours of positive vorticity.

for streaming flow past a sphere for Re = 0.01, 10 and 100. For the former case,
the classic symmetric pattern with respect to the equator of the sphere (θ = π/2) is
observed. As Re increases, this symmetry disappears and the separation of the laminar
boundary layer for Re = 10 is about to occur (Johnson & Patel 1999). For Re = 100,
separation has taken place and a well-defined stable axisymmetric recirculation region
is formed behind the sphere. For Re = 0.01, 10 and 100, the vorticity contours ωa/U

are presented in figure 18. For the lower Re, the diffusion of vorticity prevails and
the levels of vorticity show symmetry with respect to the axis θ = π/2. For Re = 10
and Re = 100, the vorticity is convected by the fluid motion.
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